A Pandemic Model: Looking at Policies and Historic COVID Data to Promote a Resilient Future

Cole Bligh, Elisavet Gallou, James Robinson, Yuqing Zhou

Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

Introduction

Objective: Assess the response of the United States to the COVID-19 pandemic at the Federal and State level to identify evidence based policy decisions that could, if implemented, reverse the current course of the virus.

How should we prepare for the next pandemic?

Definitions:

Fatality rate: measures of the SEVERITY of the condition.

Prevalence rate: determines a person's likelihood of having a disease.

National Infographic

More National Analytics

Poverty Population

Northeast Overview

- Population: 63,707,996
- COVID-19 Cases: 923,517
- COVID-19 Deaths: 64,643
- Total Tests: 8,681,361

Northeast

Midwest Overview

- Population: 68,329,004
- COVID-19 Cases: 620,759
- COVID-19 Deaths: 25,282
- Total Tests: 9,254,574

Midwest

South Overview

- Population: 117,855,255
- COVID-19 Cases: 1,538,923
- COVID-19 Deaths: 26,786
- Total Tests: 15,769,927

South

West Overview

- Population: 78,347,268
- COVID-19 Cases: 785,924
- COVID-19 Deaths: 15,443
- Total Tests: 11,132,250

West

Lowest Prevalence Rate

Hawaii

Prevalence Rate: 0.10%

Population: 1,415,872

Contact Tracing: 80 tracers; tracing 73% infections

Testing: 7.64%

Positive Test Rate: 1.31%

Shortage Areas:

Health Professional Shortage Areas: 81

Medically Underserved Areas/Pop.: 13

Status: Reopening (5/7)

Infection rate

HAWAII

On average, each person in Hawaii with COVID is infecting 1.00 other people. Because this number is around 1.0, it means that COVID continues to spread, but in a slow and controlled fashion.

Save

Highest Prevalence Rate

Louisiana

Prevalence rate: 2.14%

Population: 4,648,794

Contact tracing: 400 tracers; tracing 4% infections

Testing: 24.80%

Positive test rate: 8.62%

Shortage areas:

Health Professional Shortage Areas: 434

Medically Underserved Areas/Pop.: 73

Status: Reversing (Reopened 5/15)

Infection rate

LOUISIANA

On average, each person in Louisiana with COVID is infecting 1.14 other people. As such, the total number of active cases in Louisiana is growing at an unsustainable rate. If this trend continues, the hospital system may become overloaded. Caution is warranted.

Share

03 Mar 17 Mar 91 Apr 14 Apr 28 May 12 May 26 Jun 09 Jun 23 Jul 07 Jul 21 Aug 04

National Future Projection

imposed for 6 weeks whenever daily deaths reach 8 per million (0.8 per 100k).

Mandates easing: Continued easing of social distancing mandates, and mandates are not re-imposed.

Universal Masks: 95% mask usage in public in every location, reaching levels seen in Singapore. Mandates are reimposed for 6 weeks if daily deaths reach 8 per million (0.8 per 100k).

United States Government / NSC Playbook

Phase 1: Primarily Pre-	Incident		
Normal Oprations		No unusual Infectious Disease Outbreaks	
long time ago	. <i>.</i> /	Departments and agencies are monitoring per usual systems	
Elevated Threat		Case reports/clusters of novel pathogen: 31-Dec-20	
17-Jan-20	4	Consider border screenings to prevent the spread into the US	
29-Jan-20	4	Determine joint reporting structure and frequency of situation reports	
7-Jan-20	4	Health Advisory	
23-Jan-20	4	Travel Advisory	
25-Feb-20	4	Determine need for higher level engagement on research and development of countermeasures	
1-Mar-20	V	Determine the risk communication strategy	
Credible Threat	III HE	Confirmation of multiple human cases of a PPP anywhere: 4-Jan-20	
29-Apr-20	-/	Evaluate Contact Tracing	
6-Feb-20	-/	Diagnostic testing	
and the second second		Office of Foreign Affairs Disaster Declaration	
3-Jan-20	-/	Consider funding options	
17-Mar-20	1	PREP Act Declaration	

United States Government / NSC Playbook

Phase 2: Begins Upon No	tification Whe	n/After an Incident occurs	
Initial Response: Activation	on, Situational	, Assessment, and Movement	Declaration of a Public Health Emergency: 31-Jan-20
6-Mar-20	· /	Donation of supplies from SNS	
13-Mar-20	· /	Disaster Declaration	
22-Mar-20	· /	Military deployment in support of civilian DART resp	onse
17-Mar-20	· /	PREP Act Declaration	
Employment of Resource	s and Stabliza	tion	SLTT request for assistance: 29-Feb-20
2-Apr-20	· /	Deploy PHS Commissioned Corps	
23-Mar-20	· /	Implement screening and monitoring in travel	
29-Mar-20	· /	Are SNS resources necessary	
14-Apr-30	· /	Use of the Defense Production Act	
21-Mar-20	v	Use of Emergency Use Authorization	
Intermediate Operations			SLTT request for assistance: 29-Feb-20
29-Feb-20	-	Assistance to SLTT in response	
2-Apr-20	· ·	Deploy PHS Commissioned Corps	

FEMA Response

DHS Reform

Evidence Based Policy Decisions

3 Ts (Test, Track, Treat)

DIM (Distance, Isolate, Mask)

P.O.L.I.C.Y.(Prepare & Organize, Lead & Inform, Coordinate & Yaager Results)

Evidence Based Policy Decisions Test, Track, Treat

"DIM" the Virus

POLICY

James's application

https://jnrobinsoniii.shinyapps.io/Timeline_Dashboard/

Future

All fellows will continue to work on this project through the rest of the summer and will look deeper into:

- How COVID-19 has disproportionately has affected minorities and different demographics
- How specific governmental policies affected each states' trajectories
- The role of age and race distribution of a state in their cases

Our main data sources

U.S. BUREAU OF LABOR STATISTICS

data.HRSA.gov

MF

Covid ActNow

GAO U.S. Government Accountability Office

Acknowledgment

This work was carried out while the authors, Cole Bligh, Elisavet Gallou, James Robinson III, and Yuqing Zhou, were a Rutgers IC CAE Research Fellow participating in the 2020 DIMACS REU program, supported through the ODNI grant for Intelligence Community Centers for Academic Excellence – Critical Technology Program.
We would like to thank our mentors Dr. Ronald J. Clark, Ava Majlesi, and Sassi Rajput, as well as the DIMACS REU Program for making undergraduate virtual research a reality in the age of COVID-19.

